Problem Statement: Predict solar power potential in Namibia based on Global

Horizontal Irradiance and meteorological data.

Outcome variable: Global Horizontal Irradiance in Namibia. (GHI_Avg)

Evaluate **16 variables** for significant prediction ability regarding meteorological data responsible for solar power potential in Namibia

Compare the performance of **7 models** for predicting solar irradiance

Southern African Universities Radiometric Network Solar Radiometric Data for the Public

SAURAN USAid Station in Namibia University of Science and Technology

Data

Data structure: 17 x 509,419

columns and rows pertaining to meteorological and physical conditions over a year.

Data Processing/ Cleaning:

16 predictors with GHI (Global Horizontal Irradiance) as the outcome.

Exploring Data

Target variable (GHI_Avg) distribution

Target variable (GHI_Avg) distribution

Models applied

	r-squared	RMSE	MAE
Linear Regression Model	0.756	177.495	141.978
Nearest Neighbors (KNN) Model	0.928	96.285	37.66
Random Forest Regression Model	0.959	71.985	24.142
Ridge Regression Model	0.754	178.623	143.723
Lasso Regression Model	0.757	177.680	141.987
XGB Model	0.958	73.564	27.542
GBR Model	0.898	114.744	62.918

Random Forest Regression Model

Ridge Regression Model

- Random Forest (RF) and XGB are the two optimal models for our dataset.
- RF is slightly better than XGB (higher R2 and lower RMSE & MAE).